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CONTINUOUS FUNCTIONS 

BY 

J. STERNFELD* 

ABSTRACT 

The main result of this paper is the following: If X is a compact two 
dimensional metric space, and {~0~}~ are four functions in C(X), then there 
exists a function f in C(X) which cannot be represented in the form: 

4 

[~x~ = ~. g,~,(x~. 

with 

I. Introduction 

g. E C(R). 

The  p r e s e n t  p a p e r  dea l s  with some  ques t i ons  r e l a t ed  to the  fo l lowing  genera l  

t h e o r e m  c o n c e r n i n g  s u p e r p o s i t i o n s  of  real  va lued  func t i ons  due  to O s t r a n d  [7]. 

(All topological spaces throughout this paper are compact  metric. By C ( X )  we 

d e n o t e  the  Banach  space  of  real  va lued  c o n t i n u o u s  func t i ons  on X, wi th  the  

s u p r e m u m  norm.)  

THEOREM 1. Let X = X ,  x X 2 x . . . x X k ,  with d i m X ~ = n ~ ( i = l , 2 , . . . k )  

and n = E~'= ~ n~. Then there exist functions ~ i, q~ ~," • • ~ ~ . ,  in C(X~ ), such that to 

every [ U C ( X )  there corresponds gs ~ C ( R )  j = l , 2 , . . .  2n + ! so that the 

_ . - -  = ~ j = ,  ~ j t  _ ) + - ' - + ~ j ( x k ) ]  holds. representation f (x , ,x~ ,  xk) z,÷,gj[q~,i(x,)+ 2 , x ,  k 

This  t h e o r e m  is a g e n e r a l i z a t i o n  of  the  w e l l - k n o w n  t h e o r e m  of  K o l m o g o r o v  

[5], w h e r e  X~ = [0, 1] for  all i. T h e r e  are  s eve ra l  na tura l  p r o b l e m s  wh ich  ar i se  in 

c o n n e c t i o n  wi th  T h e o r e m  1. (See  [9] and  [10] fo r  a s u r v e y  o f  r e l a t e d  ques t i ons . )  

W e  shal l  c o n s i d e r  here  the  p r o b l e m  of  the  n u m b e r  of  s u m m a n d s  n e e d e d  fo r  a 

r e p r e s e n t a t i o n  of  the  f o r m  g iven  b y  T h e o r e m  1. F o r  c o n v e n i e n c e ,  w e  r e s t a t e  

Th.  1 in the  case  k = 1. 

' This is a part of the authors' Ph.D. thesis prepared at the Hebrew University of Jerusalem 
under the supervision of Professor J. Lindenstrauss. I wish to thank Professor Lindenstrauss for 
his interest and advice. 
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THEOREM l*. Let X be an n-dimensional space. Then there exist {~o~}ff.T 1 in 

C(X) ,  such that for every f in C(X),  there corresponds {g~}~"=,' in C(R)  so that 

the representation 

2 n + l  

f ( x ) =  ~ g,(¢,(x)) 
i = l  

holds. 

In Sec. 2 of this paper,  we prove that in the case n = 2, the number  2n + 1 is 

the minimal one for a representat ion of the type appearing in Theorem i* (and 

thus in Theorem 1). More precisely, we prove: 

THEOREM 2. Let X be a 2-dimensional space, and let {qp~}4_, be functions in 

C(X).  Then there exists an f E C(X)  such that f cannot be represented in the 

form 
4 

f(x ) = ~ g, (~0, (x)) 
f = l  

with g, in C(R). 

In the case n = l, the situation is different, and we shall consider it briefly in 

Sec. 3. For n > 2 the situation is similar to the case n = 2. Some of the lemmas 

presented here can be immediately generalized to the case n > 2. In others,  the 

situation is more difficult. We shall consider the case n > 2 in a subsequent  

paper.  (See note at end of paper.) 

Theorem 2 is an improvement  of a theorem of Bassalygo [2], who proved that 

in the case X = [0, 1] 2, three functions {~0~}3=, are not enough for a representa-  

tion of the type appearing in Theorem i*. Our Theorem 2 also improves  a 

theorem of Doss [3] who proved that in the case n = 2, four  functions are not 

enough for the representat ion in Kolmogorov ' s  theorem [5], provided the 

functions ~0~ are monotone.  We use here some of his methods.  

Let us remark that the problem of the number  of needed summands  leads, 

even in the simplest case, (i.e. in Ko lmogorov ' s  theorem),  to dimension 

theoretic problems.  Therefore ,  the natural approach is to begin at the outset  

with an arbitrary n-dimensional  space. (Two dimensional space in the present  

paper.) 

2. Proof of Theorem 2 

The proof  of the theorem is based on a series of lemmas.  The first lemma 

shows that two functions are not enough in Theorem 1" if dim X = 2. Later,  we 
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shall show that three functions do not suffice and eventually that even four are 

not enough (this is the statement of Theorem 2). 

LEMMA 1. Let X be a two dimensional space, and let ~,, q~2 be functions in 

C ( X ) .  Then there exists an f E C ( X )  such that f cannot be represented in the 

form : 

f (x  ) = g,(~,(x )) + g2(~2(x)) 

with gi(i = 1,2) real functions. 

PROOF. Suppose that such an f does not exist. Then clearly, the functions 

~pl, q~2 separate the points of X, and thus the mapping ~: X--* R 2, defined by 

~b(x) = (~,(x), ~2(x)), is a homeomorphism. Hence  O[X] is a two dimensional 

set in R 2, and therefore  has a non-empty interior in R 2 ([4] p. 44). In particular, 

~ [X]  contains a rectangle with vertices 

(a,,13,), (a~,132), (a,,[32), (a~,f3,). 

Set x, = 6-1(a,,/3,),  x2 = 4,-'(az,/32), x3= 6- ' (a, , /3z),  x , =  ~-'(ot2,/30. 

Let  f be a function in C ( X )  so that f ( x , ) =  f (x2)= 1, and f (x3)= f ( x , ) =  O. 

Since f can be represented by f ( x ) =  g,(¢,(x))+g2(¢2(x)) ,  we get 

2 = f (x , )  + f(x2) = g,(ot,) + g2(~,) + g,(az) + g2((32) = f(x3) + f (x , )  = 0 

which is a contradiction. 

Let  us recall now some definitions and results f rom dimension theory.  An 

n-dimensional (compact  metric) space is called an n-dimensional Cantor 

manifold if it cannot be disconnected by a subset of dimension <= n - 2. Clearly, 

an n-dimensional Cantor manifold is connected,  and has dimension n at each 

of its points. 

It is well known that every n-dimensional space contains an n-dimensional 

Cantor manifold ([4], pp. 93-95). Thus there will be no loss of generality if we 

assume in the proof  of Th. 2 that X is a two-dimensional Cantor manifold. 

Indeed, if Y CX, and f ~ C ( Y )  cannot be represented as f ( x )  = E~=,g,(q~,(x)) 

(x E Y), then such a representation is impossible for  an extension ] of f over  

X. From now on we assume that X is a two dimensional Cantor manifold. 

A function 0:  X--* Y is called zero-dimensional if dim 0-~(y) =< 0 for every  

y E Y. A theorem of Hurewicz ([4], p. 91) states that d imX=<dimtk[X]  

whenever  ~ is zero-dimensional. 
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LEMMA 2. Let X be a two-dimensional Cantor manifold, and let {q~}~_-+l be 

k + 1 functions in C(X)  such that each f E C(X)  admits a representation of the 

form f ( x ) =  E~21g,(~,)), with g~ in C(R).  Assume also that for every two 

dimensional space Y, and k functions {0~}~=1 in C(Y ) ,  there exists an f E C ( Y )  

such that f cannot be represented as : 

f ( x )  = ~ g,(tp,(x)) with g, in C(R)  
i - I  

(i.e. k +1 is the minimal number for two-dimensional spaces). Then every 

k-tuple of different functions out of the k +1 functions {~}~--+I defines a 

zero-dimensional mapping from X into R k 

PROOF It is clearly enough to consider ~ =(¢ , ,q~2 , . . .~k) .  Suppose that 

d i m O > 0 ,  i.e. that there exists an a = ( a , , a 2 , ' " a k )  in R ~ such that 

d i m ~  ~(a )=  > 1. Let F = ~-~(a) .  Then for i =<i =<k, we have ~ [ F ]  =a~. Since 

{~, }~_-+l separate  the points of X, and ~,~ 1 -< i = k are constant  on F, ~k+, must be 

one-to-one on F. Thus p~+~/F is a homeomorphism,  and ~k+~[F] is a one- 

-dimensional set in R. Hence,  ~k+~[F] contains an interval J of positive length. 

Choose x E F so that ~k+,(x) is an interior point of J. By the continuity of 

~k+~, there exists a neighborhood U of x in X so that q~+,[U] CJ. 

Fig. 1 

F is closed and one-dimensional ,  thus, F is not dense in any open set of X. 

(Because X is a two-dimensional  Cantor  manifold). Hence,  we can find a 

closed subset  Y of U, with non-empty  interior so that Y 71 F = ~b. Since Y has 

non-empty interior in X we have dim Y = 2. 

We shall show that every  f E C ( Y )  can be represented as f ( x ) =  

Z~=, g~(q~(x)), which will contradict  the assumption of the lemma. Let  f be any 

function in C(Y) ,  and let f ~  C(X)  satisfy f / Y  =f,  and f / F  = 0 .  By the 
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assumption of the iemma [ can be represented as f (x )  = E~_-+l g, (~o, (x )), x E X. 

Without loss of generality we may assume that g~(a~) = 0 for 1 =< i =< k, where a, 

are the coordinates of a. We recall that for x ~ F we have ~,~(x) = a~ 1 <= i =< k 

and f ( x ) =  0. So that for  x E F we get: 

0 = j~(x)= ~ g,(~o,(x))= g,(a,)+gk+,(~Ok+,(X)) 
i ~ l  i= 1  

= gk +,(@~ +,(x )), 

i.e. gk+~ vanishes on q~k+,[F], and in particular on q~k+,[Y] which is contained in 

~k+,[F]. 

Consequently for x E Y we have: 

k 

l ( x )  = )~(x ) = ~ g, (q~, (x)). [] 
i = l  

LEMMA 3. Let X be a space, and let {q~,}~=, be [unctions in C(X)  such that 

every [ ~ C(X)  admits a representation f (x )  = E~=, g~(q~,(x)), with g~ E C(A~) 

(A~ is the range of q~ ). Then there exists an M > 0 so that each f E C(X)  admits 

the above representation with g, satisfying [Ig~ll <= MIIfH. (I =< i -<_ k). 

PffOOF. Set C = C(A,)  x C(A~) x . . .  x C(Ak), with the norm llg,'" ",gk][c = 

max,,,,kltg, llA,. Consider the operator  T : C---> C(X)  defined by: 

T ( g , . . .  gk)(x) = ~ g, (q~, (x )). 
i= 1  

Obviously T is linear and bounded. (IITII ~ k) and by our assumption, T maps C 

onto C(X).  Thus by the open mapping theorem, T maps the unit ball B of C 

onto a neighborhood of the origin of C(X),  and therefore,  there exists an M > 0 

so that T(MB)  contains the unit ball of C(X).  [] 

LEMMA 4. Let X be a two-dimensional Cantor manifold, let {~o~}~=, be 

functions in C(X)  such that each f E C(X)  admits a representation [ ( x )=  

E~= j g~ (¢i (x)) with g~ ~ C(R ), and let M be a positive number. Then there exists 

an f E C(X) ,  Ilflt = 1, such that in every representation of [ in the above- 

mentioned type, there exists an index, i, so that IIg, II --> M.  

REMARK. Clearly Lemmas 3 and 4 imply that for every two-dimensional 

space X, and every three functions ~,, q~2, q~ in C(X) ,  there exists an f ~ C(X)  

~ ' i = 1  which cannot be represented as f ( x ) =  3 g, (~(x)) .  
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PROOF OF LEMMA 4. We prove the lemma in two steps. We show first that if 

X contains a sequence of a certain type, the conclusion of Lemma 4 holds, and 

then that such a sequence does indeed exist in X. We use the following 

notation: the vector valued function (~,, ~o2, ~o3,) : X ---) R 3 will be denoted by ~o. 

The images of the elements of X under ~,,~o2,~o3 will be denoted by a,/3,), 

respectively. 

A sequence {xj}~=, of elements of X will be called an alternating sequence if 

the following holds: 

(l) ~o2(x2,-i) =~o2(x2,) for j =  1 ,2 , - - . [~]  

(2) ~o3(x2,) = ~ o 3 ( x 2 , + , ) f o r  j = 1 , 2 , . - . [ k ]  - . 

Two sequences {xi}~=, and {yj}~=, of elements of X will be called a double 

alternating sequence, if both {xi}~:, and {yj}~=, are alternating sequences, and in 

addition ~01(xJ)= ~o,(y j) for 1 _-<j _-<k. Table I is an example of a double 

alternating sequence, for k = 6. 
TABLE I 

,¢(x,) = (,~,.t3,. ~,,) ,ply,) = fa,.fi,. ~,) 

~fx2) = fa2,13, y2) ~(y2) = (a2, fi,, ~2) 

~ ( x , )  = (a, , /32,  y2) ~ ( y , )  = (o,,, fi2, ~2) 

, : (x , )  = (o,,./3,,  ~/,) ~ ( y , )  = (,~,, fi , ,  ~,) 

~(x~) = ( .o ,  13,, ~,,) ~ (y~) = ( ~ ,  fi,, (,,) 

We claim that if for every intger k, there is in X a double alternating 

sequence of length k, with distinct elements, then Lemma 4 is true. Indeed, let 

M > 0  be given. Let  k be an even integer, k _->2M, and let {xj}~.~ {yj}~_, 

be a double alternating sequence with distinct elements. Let  

L={x~,x3,...Xk_,y2, y4,...,yk} and N={x2, x4,'''Xk, y,,y~,''',yk-~}. Since 
all the points are distinct L A N = 4~, and hence there is an / • C(X) with 
II f I[ = I, so that / is equal to I on L and to - I on N. We shall show that this / 

has the desired property. Suppose f admits the representation: 
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f ( x )  = ~ g+(q~,(X)) X ~ X. 
i = l  

Let  W = E x ~ L . f ( x ) - E x ~ N . f ( x ) .  Since [ ( L )  = 1 and [ ( N )  = - 1 and  both  L and 

N conta in  k points ,  we  get tha t  W = 2k. 

On the o the r  hand,  s ince {xj}~=, {y~}~=, is a double  a l te rnat ing  s equence  we get  

(m = k/2)+: 

x E L  x E N  j = l  j =¿  

i = l  i = l  

j = l  i = I  j = l  i = I  

-~ ~ g,(~,(x~,))-~ ]~ g,(~,(y~j_,)) 
j = t  i=1  i = l  i = l  

= g3(q~3(x O) - g,(q~3(Y,)) - g,(q~3(Xk )) + g3(q~,(Yk)) 

k 

+ ~ [g,(q~,(xj)) - g,(q~,(yj))] + ~'. [g2(q~2(x2s-,)) 
j = l  j : l  

- g2(q~2(x2j))] + ~'. [gz(q~2(yzj)) - g2(q~z(Yzj-,))] 
j = l  

m 

+ ~]  [g3(q~3(x~i))- g3(~3(xzs+~))] + ~ [(g3(~3(Yzs+~)) 
i=[ i=l 

- g3(q~3(y2j))] = g3(3'0 - g3(3~,) - g3(3'.. +,) + g3('Y.. +,). 

(where  3', = q~(x,), ~, = q~3(y,), 3',.+, = ~+(xk), 3',.+, = ~¢,(y~)). 

H e n c e :  

g3(3",) - g3(~,) - g3(y,. +,) + g3(3~,. +,) = W = 2k => 4M, 

and thus  IIg,ll ~ M. It r emains  to show that  under  the a s s u m p t i o n s  of  L e m m a  4, 

there  exis ts  in X a double -a l t e rna t ing  s e q u e n c e  of  length k, fo r  e v e r y  e v e n  k. 

, It might be helpful to follow this computa t ion  with the example  in Table I in mind,  and 
noting that  if q~ (x) = (a,/3, 3') then  [ ( x )  = g , (a  ) + g2(/3) + g3(3"). 
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Set (¢,,  ¢2) = ~0,.2 : X -o R 2, and (¢,,  ~03) = ~0,.3 : X -~ R 2. Let  us recall that by 

Lemmas 1 and 2, the functions ¢,.2, and q~,.3 are zero-dimensional,  and thus the 

image of any open set of X under each of these two functions is two- 

-dimensional in R 2. 

We introduce a special notation: Let  F be a closed subset of X with a 

non-empty interior. We say that F D ,.2 H if there exists a rectangle S in R 2 with 

sides parallel to the axes and with positive area so that q~,.2(F)D S and 

H = F A q~.~(S). With this definition it is clear that whenever  F D ,.2H we 

have that F D H, H is closed with non-empty interior, and q~,.2[H] is a rectangle 

(namely the rectangle S appearing in the definition). The notation F D ,3 H is 

defined similarly, (with q~.3 replacing q~,2). Observe that since ¢~.2 and q~,.3 are 

zero-dimensional,  it is possible to find for every  closed subset F of X, with a 

non-empty interior, sets H and L so that F D ,.2 H and F D ,.3 L. 

Let  k be any positive integer. Set X = Fk. Clearly q~LE[F~] contains a 

rectangle S={(a/3:a'<-_a <=a", /3'<-/3 <=fl"}. Let/3*,f l** be real so that 

/3' < / 3 "  < /3" *  </3"  (See Fig. 2). Set 

S ~ = { ( a / 3 ) : a ' _ - - a  <-a";  /3' _-< /3 _-__ /3 "}; 

S'~={(afl):a'  <-a.<-a"; /3"*<-fl<<-/3"}; and 

F~, = Fk N ¢,J(S~); F~ = Fk r3 q~?;(S~). 

Clearly F~, A Fg = (k and F~ D ~.2 F'4 Fk ~ ,.,~ F'L 

k 

/3' 
H 

S k 

4 S '  ( / ]  S" 7" k-I ~ - 1  ;" / /  
/ / , r '  

s;, 
Fig. 3 

/3 ° , e "  ,~" 

Fig. 2 
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The  set  ~p,.dF'd conta ins  a rec tangle  SI,-, in the a3` plane,  of  the f o r m  

S;,_, = {(a, 3`) : &' <= a <= 6'% 3`' <_- 3  ̀_-< 3`"}. Obvious ly ,  a '  -< &' < &" _-< a " i . e . ,  the 

in terval  [a ' ,  a"] conta ins  the in terval  [&', &"]. 

Set F;,_, = F;. f-I ~ ?.~(SL,) and we have:  G D ,.2 F~ D ,.3 F L , .  Le t  us re turn  to S'~. 

It con ta ins  the rec tangle  S~. S~ = {(aft)  : &' <_- a _-< 6 " , / 3 * *  _-__/3 <_-/3"} (see Fig. 

3). Set  P ~ = F ~ q ~ f J ( S D .  Then  we have  ~p , [F~]= [~ ' ,&" ] .  N o w  ~,.3[1O~] 

conta ins  a rec tangle  S~_,, and it fo l lows  f r o m  the cons t ruc t ion  that  its a side is 

con ta ined  in the interval  [ d ' , d " ]  (see Fig. 3). Set F~_, = q~, . f fS~_,)VIF~.  We 

re turn  to S L , .  It conta ins  a rec tangle  S L , ,  whose  3' coord ina tes  are the s ame  as 

those  of  S~_,, and with a coord ina tes  which  are con ta ined  in the interval  of  a 

coord ina te s  of  S~_ ,. Put  F;,_, = ¢ ;.~(S;,_,). The  set  ¢,.dF~, ,] conta ins  a rec tangle  

SL_., whose  a coord ina te s  are necessar i ly  con ta ined  in the interval  of  a 

" - ' ~S '  ~ Cl F L , ,  and we have  F~,_, D ,.~F~,_~. coord ina te s  of  S~-,. Set FI,_~= q~.~ ~ ,~ 

Cont inu ing  in this m a n n e r  we cons t ruc t  sets {F~}~=, and {F'/}~=~ so that:  

and 

X=F~ 

D F~, D F~,_, D F~-2 D - - -  D F~ 3 F"  3 F ; .  
1,2 1.3 1.2 1,3 1.3 1,2 

IP I I  I t  I I  r f  D Fk  D Fk- ,  D Fk - :  D - - -  D F ;  D F :  D F , ,  
1.2 1.3 L2 L3 ,.3 1.2 

¢,[F~] = ~,[F~] = [ a ' ,  a " ]  3 ~ , [ F L , ]  D ~,[F~_,] D ~ , [FLz ]  

D ¢p,[F'~-2] D - - -  D ¢p,[F~] D ¢p,[F'~'] D q~,[F',] = [ a * ,  a** ] .  

The  interval  [ a * , a * * ]  = ~0,[F',] is thus con ta ined  in the interval  of  a coordi -  

na tes  of  all the rec tangles  appear ing  above .  

C h o o s e  now k dist inct  points  {al}~=, in the interval  [ a * , a * * ] ,  and let {xi}t=, ~ ~ 

be  poin ts  in F', so that  q~,(~,) = a,. Set q~2(2,) =/3, and ~03(.~,) = 3~. Setx~ = .~, 

fl, =/3z, and 3̀ ~ = ~ .  Since F ~ D  ~.2F',, ~,.2[F;] is a rec tangle .  Since ( a , . f l , ) =  

~,.2(x,) and (a2, /32)= ~#,.d.G) are both  in this rec tangle ,  the point  (a2,f13 also 

be longs  to this rectangle .  H e n c e  there  is an x2 E F'~ such that  ~j.dx2) = (a2, fl,). 

Put  ~3(x2) = 3`2, and then ~# (x,) = (a , , /3 , ,  3`,) and ~ (x:) = (a~_, fl,, 3`~.). Since £3, x2 

are in F~, and F ;  D ,.3 F~ the same  a r g u m e n t  shows  that  there  exis ts  x3 E F ;  

such that  ~,.3(x3)= (a3,3`2). Put ~dx~)=/3 . ,  and then ~ ( x 3 ) =  (a3, f12,3`0. The  

three  poin ts  we cons t ruc t ed  this fa r  sa t i s fy  
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~(X,) = (a, , /3, ,  V,) 

~(X,_) = (a,, fl,, ~':) 

,¢(x3) = (a3, ~,_, v2) 

which are precisely the first three rows of the left column of Table I. By an 

obvious induction we continue the construct ion of the x, i = l, 2 - - k  so that 

{x~}~-~ will be an alternating sequence.  The {y~}k,_, are constructed in the same 

manner,  using the sets F':, one has only to choose the points {p~}~=j so that 

~¢,(~) = a~ for all i. This is possible since ~,[F';] D [a *, a **] D {a, }~-,. It is easy 

to see that {x,},k=, n {y~}~_, = 05 since {x,}~ , C F [  and {y~}~-, CF~ and F[fq  F ~ =  

05. (The {x~}~=, and similarly the {y~}~-, are mutually distinct since a ~ / a t  for 

i ~  j). This proves  Lemma  4. 

The next Lemma  is of a general geometr ic  nature. 

LEMMA 5. Let W be a two dimensional Cantor manifold contained in R 3. I f  

W is not contained in a plane perpendicular to one of  the axes of  R 3 then at 

least two of  its three projections on the two-dimensional planes determined by 

the axes are two dimensional. 

PROOF. We denote the axes of R3 by X, Y,Z, the project ions on them by 

Px, P ,  Pz. and the project ions on the axis planes by P, ,  Px:, P~z. 

We shall prove that if dim P,y [ W] = dim Px: [ W] = 1 then W is contained in a 

plane parallel to the Y Z  plane. 

Put A ={x :x E X ,  d i m [ W A x  x Y x Z ] = < 0 } .  The set P , [W]  is connected 

and compact .  If W is not contained in a plane parallel to the Y Z  plane then 

P,[W] contains more than one point, and hence Px[W] = [a,b], with a < b. 

Let  xo be an interior point of [a, b ].Then clearly W M xo x Y x Z disconnects  

W. Since W is a two-dimensional Cantor  manifold we get d im[W A xo x Y x 

Z] _-> 1. Hence,  xo ~ A. 

Thus we have shown that if W is not contained in a plane parallel to the 

Y × Z plane, then there exists an open interval (a, b)  in the X axis which is 

disjoint f rom A. 

For  each rational y, and positive rational e, we denote 

B y ( % e ) = { y : y C  Y. l y - y l < e } ,  

B~(~/, E ) = { z  : z  E z ,  Iz - ~,l < ~}, 

S~(7, e) ={x :x  E X ,  x x By(T,~)CP**[W]} and 

S,(~/,e) ={x  :x  E X ,  x x Bz(7, e ) C P ~ [ W I } .  
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We shall show now that X \ A  C U SR(3',E) where the union is taken over  all 

rational 3' and E > 0 ,  and R E{y,z}.  Indeed, let x o E X \ A ,  i.e., 

dim [ W n xo × Y x z ]  -> I. A set of positive dimension in the plane has positive 

dimensional projection on at least one of the planes '  one dimensional axes. 

Hence  the projeciion of W O x o × Y X Z  on x o × Y  or x o x Z  contains an 

interval, and thus a rational interval of type xo × By(3", e) or Xo× Bz(3',e). 

Hence  x0ESy(3 , ,e )  or xoESz(3, ,e) .  Thus X\ACU~.eSR(3,,e) or A D  

X \  U ~.,SR(3",e ). 
We now claim that if dimPxy[W] = 1, then for every 3" and E Sy(3",~) is 

nowhere  dense in X. Indeed, if there exists an interval I C X such that 

G = S~(3', ~) n I is dense in L then since for  each x E G we have x x By(3', e) C 

Pry[W], we get G × By(3' ,E)CP~,[W].  But Pry[W] is compact ,  and therefore  

P~y[W]DGxBy(3",~)DGxBy(3",E)=IxB~(3",e). But I x By(3',e') is a rec- 

tangle. Hence  dim P~y [ W] = 2. 

A similar argument  shows that if d i m P ~ [ W ]  = ! then for every  3" and E 

S~(3',e) is nowhere  dense in X. Consequent ly,  if both P~y[W] and Pxz[W] are 

one dimensional,  then U v.,SR(3', e) is of first category in X. Thus by the Baire 

category theorem X \  U ~..S~(3", e) is dense in X. Since A D X \  U ~.,SR(3", E), 
A is dense in X too. But we have seen that if W is not contained in a plane 

parallel to the Y • Z plane then there exists an interval which is disjoint f rom A. 

This proves  L e m m a  5. []  

Let  X be an n-dimensional  Cantor  manifold, and ~ : X - - *  R"  a function. 

will be called dimension preserving if dim~b[Y] = n whenever  dim Y = n. 

REMARK. By the theorem of Hurewicz [4] mentioned before,  zero- 

-dimensional functions are dimension preserving. Let  us also remark that the 

image O[X] of an n-dimensional  Cantor  manifold X under a zero-dimensional  

function ~b, is again an n-dimensional  Cantor  manifold. Indeed, if U discon- 

nects ~b[X], then O - ' ( U )  disconnects X, and thus dim ~b-'(U)_-> n - 2 .  By the 

Hurewicz  theorem, we get that dim U = dim~b(O-t(U)) _-> dim~b-~(U) _-> n - 2. 

LEMMA 6. Let X be a two-dimensional Cantor manifold, and let {,p~}~=~ be 

four functions in C(X) such that each f E C(X) admits a representation of the 

form 

[(x) = ~ g,(q~,(x)) with g, ~ C(R). 

Then there exists a permutation 7r of {1,2, 3, 4} and a two-dimensional Cantor 
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manifold Y C X  so that the restriction to Y of the four functions (~p,,..~p..2)), 

( q ~ . .  q~,.3)), (¢~,_.), q~,~). (q~.,3. ¢~4~) (all maps into R ") are dimension preserving. 

PROOF. We use the notation (q~,, Cj) = q~,.j. Let  us first observe  that by L e m m a  

2, L e m m a  4, and the remark following it, each 3-tuple of different functions 

q~.. = (¢~,¢~,¢~) out of the four  functions {¢,};~,, forms a zero-dimensional  

function q~..: X " - ~ R  3. Hence  ¢,.. maps two-dimensional  Cantor  manifolds 

onto two-dimensional  Cantor  manifolds. 

We shall show now, that given two functions of the type q~,.~, with a common 

index i, say q~.2, and q~.3, they cannot  both lower the dimension of the same 

two-dimensional  subset  of X. Indeed, assume that both q~,._., and q~,.3 reduce the 

dimension of a two-dimensional  set U C X. Let  Y be a two-dimensional  Cantor  

manifold contained in U. We have dim q~._[ Y] = dim q~.3[ Y] --- I. 

(dim q~,i [Y] = 0 is clearly impossible). 

By our remark,  q~._.~ is zero-dimensional ,  and hence W = ¢~.2.~[Y] is a 

two-dimensional  Cantor  manifold contained in R 3. The two-dimensional  pro- 

jections of W in R -~ are ¢,.~[ Y], q~.3[ Y], and q~_. ~[ Y], and by our assumption two 

of them, ¢~.~[Y] and q~J.3[Y], are one-dimensional.  Hence  by L e m m a  5, W is 

contained in a plane parallel to the 2, 3 plane. This means that q~, is constant  on 

Y. Thus each f ~ C ( Y )  can be represented as f (x )  = gT~. g~ (¢, (x )) contradicting 

L e m m a  4. This proves  our assertion. 

We come now to the proof  of the lemma. If all the six functions q~.~ : X ~ R:  

are dimension preserving,  then there is nothing to prove.  Assume that one of 

the functions,  say q~:,3, reduces the dimension of a two-dimensional  set U C X. 

Let  Y be a two-dimensional  Cantor  manifold contained in U. By our previous 

assertion, all functions ¢,.~, having a common  index with q~..~, are dimension 

preserving on Y, i.e. q~,z. ¢~.3, q~,4, q~3.~ are dimension preserving on Y. This 

proves  L e m m a  6. [] 

PROOF OF THEOREU 2. Theorem 2 will be proved by showing that if X is a 

two dimensional space and {q~}~=, are four functions in C(X)  such that each 

f ~ C(X)  admits a representat ion 

f(x)= ~ g,(~,(x)) with g, EC(R), then 
i = l  

L e m m a  3 is contradicted,  i.e., given M > 0, there exists an f ~ C(X) ,  Ilf[[ = 1, 

such that in every  representat ion of f in the above  form, there exists an index i 

such that Ilg, II ->- M. 
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As usual, we assume that X is a two-dimensional Cantor manifold, and by 

Lemma 6, we may assume that the functions q~,.2, q~,.~, q~2,4, q~3.4 are dimension 

preserving on X. We use the letters a,/3, y, 6 to denote the images of points 

x E X under ~i i = 1,2, 3,4 respectively. As in the proof of Lemma 4, we call a 

sequence {x~}~=, C X  an alternating sequence if we have q~2(x~) = q~.,(x~+,) for  i 

odd, and q~3(x,)= q~(x,+t) for i even. A pair of m-tuples of points {x,}7=, 

{xl}~,,.j will be called a doubly-alternating sequence relative t o . a  (resp. 

relative to 6) if both {x~}7=, and {x~}~__'2,,+, are alternating sequences,  and in 

addition ~0~(x,) = ~0~(x~+~) = a~, i = 1 ,2 , . . - ,  m, (respectively q~4(x,) = 

~4(x~÷~) = &, i = 1 , 2 , . . . , m . )  

Let  G and G '  be subsets of X and let k be an integer. We use the notation 

G ' <  ,.kG if G ' C G ,  and for every set of k points {a~}~=, Cpj [G ' ] ,  so that a~'s 

with even indices are different from a~'s with odd indices, there exists an 

alternating sequence {x~}~=, in G with q~,(x~)=a,, l<=i_<k. The relation 

G'<4 . ,G  is defined similarly with {&}~=, and ~o4 replacing {a,}~=, and ~0, 

respectively. 

Since the functions ~,.~, ~,,.~, ~ . , ,  ~os.4 are dimension preserving, we can show, 

using the same method as in the proof of Lemma 4, that given any G C X with 

non-empty interior, and any integer k > 0, there exist subsets G',G"of  X, with 

non-empty interior so that G' < ,.~ G, and G" < 4.~ G. (This is done by construct-  

ing G = G~ D ,.~G~-, D ~.3G~-2 Z) • • • D ,.zG, = G ' ) .  Using the methods of the 

proof  of Lemma 4, we are also able to show that each subset G of X with 

non-empty interior contains doubly-alternating sequences of arbitrary length. 

(Relative to a or 6). 

Let  k > 0  be any integer. The set ~o,.~[X] contains a rectangle 

S = {(a /3) :  a '  _-<a .< ,~" ; / 3 '  _</3 _-</3"}. 

Choose /3* so that / 3 "< /3*< /3" ,  and set: 

s ,  = {(,~/3): a '  _-<,~ .< ,~" , /3 '  _-</3 =</3") 

s2 = {(,~t~) : ,~ '  _-< a <-a", 13"<-13 <-_/3"} 

(see Fig. 4). 

Set G~ = q~;.~(S,). The set Gk is closed with non-empty interior, and according 

to our comments ,  a subset G~, of Gk can be constructed,  so that G~, is closed 

with non-empty interior, and G~, < ,.2k Gk. ~o,.2[GI,] contains a non-empty open 

plane set. Thus, ~0,[G~l contains an interval [~* , a** ]  which is clearly con- 

tained in [ a ' , ~ " ] .  (see Fig. 4). Denote: 
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S~- -{ ( a /1 ) : a*  < a < a * * , / 3 "  < /?  </3"}, 

and let V be a closed rectangle with sides parallel to the axes, contained in S[. 

Set X ' =  ~o~:,(V). Obviously we have: 

(1) x ' n  Gk = 4, 

(2) ~0,[X'] C [a *, a *'1 C q~,[GI,]. 

The space X '  is a compact  two-dimensional metric space. Operating in a similar 

manner on X '  (or on a Cantor manifold contained in it), we construct  in X '  

closed sets with non-empty interior Hk, H~ and X" so that: 

(3) H~, < Hk 
4,2k 

(4) (~4[X tt] C q~,[H~,l 

(5) x " n  H~ = 4,- 

Again in X" we construct  closed sets with non-empty interior G~_,, GL, ,  and 

X"'  so that: 

(6) GL, < G~_, 
1,2k 

(7) q~,[X"'] c ~o,[GL,] 

(8) X" n G~_, = d~. 

Continuing in this manner we construct sets {Gi}~-,, {G'~}~=,, {Hi}~_,, {H~}~=l so 
that: 
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(i) G5 < ,.2~G, H~ < 4.2~H~ for 1 =< i =< k. 

(ii) ~,[H,]C~,[G~] for l<=i<=k and ~p4[G,_,]C~4[H',] for 2<=i<=k. 
(iii) The sets {Hi}~=~ and {G~}~-, are all mutually disjoint. The next steps in 

the proof are, unfortunately, somewhat involved. (By that we don't  mean that 

the previous were simple....) To fix the ideas, let us consider the following 

example where k = 2. 

In this case we have: 

G;<G,,  G~<G2, H',<H,, H'2<H2. 
1,4 1,4 4,4 4,4 

~,[H,IC~,[G'~]; q~,[H2] C~,[G;]  q~4[G,] C~4[H~], 

and the sets G,, G2, H~,/-/2 are mutually disjoint. 

Let  8~,8' 8 '  8 ' '  2, 3, 4oedistinct points in ~4[H;]. Since H~ <4.,H,, there exists an 

alternating sequence {x'i}~, in H,,  with ~4(x~)=8~i. Thus, the {x'i}~=, are 

distinct. Set ~p,(xl)=al .  i =  1,2,3,4. We have: {a~i}~=~ C~[Hm] Cq~,[G'd, and 

G~ < ,.4G,. Hence if {a'  ' ,, a3} f3 {a~, a '}  = ~b, then there exist in G~ an alternating 
sequence {x~}~=,, with ~p~(x 2) = a~, and {x2,x 2} f3 {x2,x 2} = ~b. Set q,4(x 2) = 8~. 

Then {82}4= 1 C ~,[G~] C ff:4[H~]. Hence if {8~, 8]} ~ {8~, 8, ~} = ~b, there exists in H2 

an alternating sequence {x~}~, with ~,(x 3) = 8 2, and {x ], x ]} f3 {x ~, x 43} = ¢b. 

{ a , , a 3 } n  = {or 2, a 4} 6, we can find in G2 an Setting ~,(x~) = a~,and hoping that 2 2 z 2 

alternating sequence {x ~}~_~ with ~,(x 4) = a 2. 

In this manner, the 16 points {x~} 1 =< i, ./_-<4 are constructed, with 

{ x ~ : i + j - =  1 ( m o d 2 ) } f q { x ~ : i + j  -=0(mod2)}=~b,  

and: 

T A B L E  II 

I I I 2 2 2 ,p (x ' , )  = a ' , , / 3  ] , , / , ,  8 ,  , p ( x ,  ~) = a , , t 3 , , , / , ,  8 ,  

X I I i 2 ~o( ~)= ,,/31,y',8' ,p(x~)= ~ a2,/3,, yz, 82 

,pfx~) = a', t3', y', 8~ ,p (x ~) = a', 13~, ~,~, 8~ 

, p ( x ' ) = a ~ , / 3 ~ ,  ' ' , 2 2 3,3, 8 ,  ~ ( x ~ )  = a , , / 3 , ,  3,3, 8 ,  

X4 2 /24 4 3 

0[2 ,q4  4 ~ 3  

,p (x~)  = a~,/3~,,  ~ , = ~,,,  8 ,  ~,(x, ' )  a~,, ~ ,  y 3 , 8 , '  ' 
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If [ E C(X)  admits the representation [(x) = E~=t g~(~o,(x)), then following 

Table II we get: 

W = ~ ~ ( - l)'+'[(x~) = g3(')' ~) + g3(')']) + g3(Y]) + g3(y]) 
j = l  i = 1  

4 

+ g3(Y]) + g3(')']) + g3(Y~) + g3(yl) + ~] g4(8 3), 
i = 1  

i.e. 3 . 4 =  3 . 2 k  summands. Since the sets N = { x { : i + j - =  1 (mod 2)} and 

L ={x{: i + j  ~ 0  (mod2)} are disjoint in X, there exists in C(X) an [ with 

II[[[ = 1, I'(N) = - 1, and f ( L )  = + 1. For  this [ we get: 

j = l  i = l  

(i.e. W = (2k) 2 = 4k2). Hence,  for g3 or g4, we get IIg II ~ (4kZ/3"2k) = 2k/3. One 

observes easily that the last inequality holds if a similar construction is carried 

out with an arbitrary k. The following is a precise realization of the above ideas. 

Let  {8' ~k ~}~=, be distinct points in ~4[H~]. Since H~ <,2kH,,  there exists an 

{x,},=, in H,,  with q~(x',) 8 ' .  Thus, the alternating sequence ~ 2k = {x~}~=~ 2~ are 

distinct. If f E C(X) admits the representation: 

4 

f (x)  = ~ g,(q~,(x)), 
i = 1  

then it follows f rom the definition of alternating sequence that: 

2k 2k 2k 

(A) ~ ( -  1)'+' f(x',) = ~ (-- 1)i+' g4(8',) d'- E (-- 1)'+' g,(ot',) 
i ~ l  i = 1  i = 1  

+ g~(y,) - g3(yk+,), 

1 __ where a ~  - q~,(x ~) 1 _-< i -< 2k, y~ = q~(x ~), and yk+, = ~0~(x~k). 

It may happen that an a ', with an even index i will be equal to an a } with an 
1 odd index ]. Suppose we have m such pairs ( i , i )  i even, ] odd and a', = a~. 

(m =<k). Thus the sum E ~ ( -  1)~+'g~(a~) reduces to a sum with 2 ( k - m )  

summands at most. Let  us reorder  the [ 2 ( k -  m)}a  ~' ~s which appear  in the 

reduced sum b y "  - ~.2(k-,.) /a  ~/J=~ in such a manner that an & I gets an odd index j if and 

~ with i odd. Such a reordering is possible since pairs of elements, only if & ~ = a 

one with odd index and the other with even index were removed from la" ~t~=J."2~ 
.f - l~2(k-m) Clearly, in the set tam=~ elements with an odd index are different from 

elements with an even index, and: 
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2k 2 ( ~ m  ) 

(B) ~ ( - I) '+' g,(a ',) = ( - I) '+' g,(& ',). 
i = 1  i = 1  

We have {6'~}~;-")Cq~,[H,]Cq~,[G'J. and G ' ,<  ,.2kG,. Thus, there exists an 

alternating sequence {x~}~i -") in G,, with ~o,(x~)= d', 1 <=i < = 2 ( k - m ) ,  and 

{x~}~(')rl{x'i}~, = ~b since H~ N G, = 4). Clearly the points x ~, with an even 

index i differ from the points x ] with an odd index i since the corresponding 

(& l)'s differ. It follows from the properties of an alternating sequence that: 

2(k --m ) 2(k --m ) 

(C) ~'. ( -  1)'f(x~) = ~ ( -  l)'g~(d~) 
i = l  i = l  

2(~-..> ['2 summands" 
+ ,=,Z (-- 1)*g4(8~)+]of the form 

l g3(y) 

f2 summands" 
2(~-..) 1) '+l = - - =  ( -  g,(&'~)+ ~ ( -  l)'g4(8~) + ~ of the form 

l g3(')') 

where 8 2, = q~,(x ]) 1 = i -<_ 2(k - m ). 

Thus, if we sum (A) and (C) we get in view of (B): 

2k 2 ( ~ m  ) 2k . 

(D) ~ ( '+~ ~ - I) f ( x , ) +  ( -  l ) ' f (x~)  = ~', ( l ) ' + ' g , ( 6 ' , )  
i = 1  i = 1  i = 1  

2(k - rn  ) 

+ Z  
i = l  

( -  1)~g4(8~)+ {4 summands of the form g3(y)}. 

~ J "  2"12(k - rn  ) Let us select, in o , \ t x , t ~ = ,  , a doubly alternating sequence relative to 

a {x ,},=z(k-,,)+,, {x ,},=2k-,,+, of distinct points. Set 8, = q~,(x ~), 2(k - m ) + 1 

2k. Then we get (see Table I in the proof of Lemma 4): 

2k 2k f 4 summands]  
(E) • ( _  , 2 1) f(x , )= ~ ( -  1)'g4(8~)+ ] of the form ) 

i = 2 ( k - r a ) + l  i = 2 ( k - m ) + l  lgz([3) or g3( 'y)J 

(a summand of the form g2(/3) may appear in (E) if m is odd). By summing (D) 

and (E) we get: 

2 2k 2k 2k 

(F) ~ ~ ( -  l)'+~f(x{) = ~ ( -  1) ~+' g4(8'i)+ ~'~ ( -  1)ig4(6~) 
j = l  i = l  i = l  , = 1  

+ {8 summands of the form g2(/3) or g3(y)}. 

The points {8 2,},=,2~ are all in ¢,[G,],  and ~4[Gl] C q~,[H2].' Thus, since Hz' < 4.zkH2, 
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we can repeat the process carried out with the {a i}~,, i.e., remove the m' pairs 

(8~,8~) with 82_~.i_ jl even and j odd, reorder the remaining ~ ' s  in the 
.f)~312(k - m ' )  prescribed manner as {g~}~,-"'% select in H~. an alternating sequence t ~ri~, 

with 3 -2 IL l  \ f 3~2(k - m ' ~  i, a double alternating sequence q~4(x ,) = and then select in , , 2 \ t x  w=, 
3 2k-- re '  [ X  3~2k {x ~}~=2~k-,.,~+~, ~ ~s~=2~-~,+, relative to 8. By (F) we then get: 

(G) ( -  '*J J - 1) '÷' 1) '÷' l) f ( x , ) =  ( g4(8 ',) + ( -  g,(a~) 
j = l  i = l  i = l  "= 

+ {less than 3 . 6  summands of the form gdfl)  or g3(7)}, 

2 3 where a ~ - q~,(x ,). 

REMARK. We use "less than 3 . 6  summands"  in the brackets,  since each j 

adds 6 such summands (2 by the alternating sequence, and 4 by the 

double alternating sequence) except  j = 1 where there is no alternating se- 

quence, and just 2 summands of the form g3(y) are added. 

Repeating this process inductively 2k times, we get: 

2k 2k 2k 2k 

(n)  ~ ~ ( -  I)'+Jf(x~) = ~ ( -  1)'*'g4(6~,) + ~'~ ( -  l)'g4((~) 
j = l  i = 1  i = 1  I = l  

+{less than 2k .6 summands of the form g2(fl) or g3(7)}, 

where 3~ = ~4(x2, k) 1 =<i = 2k. 

The points {x{} i=<i, j_---2k were selected in such a manner that j , ~ j 2  
j 2k J2 2k implies {x~ } :, N {x~ }i=~ = d), and such that for fixed jo x~ ° with odd i differs from 

all the x]°'s with even i. Thus the sets 

N = {x~ : i + j ~- 1 (mod 2)} and 

L = { x ~ : i + j  - ~ 0 ( m o d 2 ) }  

are disjoint. 

Let f ~ C ( X )  be such that Hfl] = ! ,  f [ L ] = l  and f [ N ] = - 1 .  Suppose f 

admits the representation: 

f (x )  = ~ g, (~p, (x)). 
i = 1  

Then by (H) we get 

(i) 
2k 2k 

4k2= E f ( x ) -  2 [ ( x ) =  • • ( -  1) '* ' f(x{)= 
x ~ L  x C N  j = l  i = l  
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= {less than (2k + 2k + 2k • 6) summands  of the fo rm g,(t) i = 1,2, 3, 4}. 

Thus max~,~.l{g, ll = 4k 2/16k = k/4. 

Since k was arbitrary this proves  Theorem 2. [] 

3. The ease dim X = 1 

We conclude with a special result concerning the case n = 1. 

TnEOREM 3. Let Tdenote the circle. Let ~b~, ~b2 be any two functions in C(T). 

Then there exists an f E C(T) such that f cannot be represented in the form 

f(x ) = g,(q/,(x )) + g2(~b2(x )), g, E C(R ). 
Let  X be a space with dim X _-< 1. Clearly, each f ~ C(X)  can be represented 

in our usual form using one ~ E C(X) ( i .e . . f ix)  = g(~(x)) if and only if X is 

topologically contained in an interval. If  two functions ~,,  q~2 can do the job (i.e. 

each f E C(X) admits a representat ion f ( x ) = g l ( ~ , ( x ) ) + g 2 ( ~ ( x ) ) ,  then by 

Theorem 3, X does not contain a circle. Then,  if X is assumed to be connected,  

and locally connected,  it is a tree (dendrite). It is known that if X is a finite tree 

with branching index not greater  than 3, then two functions ~1, q~2 are enough. 

In the case of infinite trees, it is not known whether  two functions are enough 

or not, however ,  three are clearly enough by Theorem i*. For  a detailed 

t rea tment  of the case where X is a tree, see [1]. 

PROOF OF THEOREM 3. Let  q,,, q,2 E C(T). 
Let  V be a subset  of T. Set 

V'  = {t : t ~ V, card[~. ' (q , , ( t )  n V] _-> 2} 

V ~ = {t : t E V, card[qG'(62(t)) n V] => 2} 

(card [U]  denotes the cardinality of the set U),  

and 

V,~ = W O V 2. 

Consider  the sequence {T.}7-o of subsets of T defined inductively by: 

To = T;  T.+, = (T.)(,~. 

We claim that O ~oT .  ~ ~b. We shall prove  this by showing that for each n, 

T \ T .  is finite. T \ T o  is empty  by definition. Assume that 

T \ T .  = { t , . . .  tk}. 

(T.)  1 = {t : t E T., card[~Tl(~,( t))  N T.] --> 2}. 
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Let  t E T~\(T,) ' .  Then  c lear ly  card[4,¢(@,(t))]  =< k + 1, and hence  O¢(~,(t)) = 
{ t , 3 , , y 2 , ' " y m }  l = < m = < k  with { 3 ' , ' " 3 - }  C { t , . . . t k } .  The re  are  at mos t  two  

points  x in T with card[~bT~(~b,(x))] = 1. O b s e r v e  also that  if t , t 'E  T~\(T.) ' ,  
then #/T'(O,(t))n ~ ' ( @ t ( t ' ) ) =  ~b. Fo r  o the rwise ,  qJ~(t)= ~ , ( t ' )  which  implies  

t , t 'E(T,) ' .  Consequen t l y ,  there  are at mos t  k + 2  points  in T . \ ( T , )  1, thus 

T \ ( T , ) '  is finite. 

The  s ame  a r g u m e n t  shows  that  T \ ( T . )  2 is finite. H e n c e  T\T~+,= 
T\ ( (T , ) '  fq (T,) 2) is finite. 

REMARK. Since c a r d [ T \ T d _ - < 4 ,  one  can easi ly  obta in  c a r d [ T \ T o ] _ -  < 

4 . 3  n- ' .  Le t  n be  an integer ,  and let t , ~  Tn. H e n c e ,  there  exis ts  a t z E  T,_~, 

t2 ~ t~, with O,(tO = ~b~(t2) = a~.Set ~b2(tt) =/3 , .  The re  exis ts  a t~ E T~-2, t3 ~ t2 so 

that  ¢,2(t2) = ¢,2(t3) =/32. The re  exis ts  t4 E T,-3, t3 ~ t4 so that  ~bJ(t3) = ¢,,(t4) = a2. 

Cont inu ing  induct ive ly ,  we cons t ruc t  a s equence  { t , . . .  t,} with: 

(* ) :  ~b,(t2k-,) = @,(t~k), O2(t2k) = ~b2(t:k+,) (k _-> 1). 

If  for  each  n the s equence  {t, • • • tn} cons is t s  of  dis t inct  e l ements ,  then for  each  

n there  exis ts  fn E C(T), so that  Ilfnll = 1, fn(t2 ) = l,/n(t2k_,) = - 1 (k - 1). 

S u p p o s e  [,(t)=g,(Oj(t))+g2(d/2(t)). Then  by  (*) ( for  n even) ,  n =  

Y-~'=l(- 1) '÷If(t ,)  = g2(fl,) + g2([3n/2). Thus  IIg~[I- n/2.  Since n was  a rb i t ra ry ,  

L e m m a  3 implies  Th.  3. 

If  for  s o m e  n, there  exis t  in the s equence  {t,- • • t,} two points  t~ = tm with 

! -<_ k < m -< n, then,  (*) implies  that:  

m - I  

(+) ~ ( -  lyf(t,)=O, or ~ ( -  l)'[(t,)=O 
i = k  i = k  

for  each  f which can  be r ep re sen ted  by  f ( t )= g,(O,(t))+g2(tk2(t)). But since 

there  are f E C(T) which do not  sa t i s fy  ( + ) ,  the t h e o r e m  is p roved  also in this 

case .  [ ]  

Note added in proof. W e  can  show tha t  the  t h e o r e m  is valid also fo r  n = 3, 

i.e. that  fo r  no X with  d i m X  = 3 will 6 func t ions  {q~l}~-, suffice in T h e o r e m  1". 

Fo r  n > 3 we  have  till now only  part ial  resul ts .  
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