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DIMENSION THEORY AND SUPERPOSITIONS OF
CONTINUOUS FUNCTIONS

BY

J. STERNFELD'

ABSTRACT

The main result of this paper is the following: If X is a compact two
dimensional metric space, and {¢;};-, are four functions in C(X), then there
exists a function f in C(X) which cannot be represented in the form:

flx)= Z g.(e:(x)),

with
g € C(R).

1. Introduction

The present paper deals with some questions related to the following general
theorem concerning superpositions of real valued functions due to Ostrand [7].
(All topological spaces throughout this paper are compact metric. By C(X) we
denote the Banach space of real valued continuous functions on X, with the
supremum norm.)

THEOREM 1. Let X =X, XX,X---xX,, with dimX,=n(i=1,2,---k)
and n = Z¥_; n;.. Then there exist functions @1, @3, * @i in C{X,), such that to
every f € C(X) there corresponds g€ C(R) j=1,2,---2n+1 so that the
representation f(x,,x»,+ - x.) =212 gl (x) + @3 (x2) + - - - + @5 (xi)] holds.

This theorem is a generalization of the well-known theorem of Kolmogorov
[5], where X, = {0, 1] for all i. There are several natural problems which arise in
connection with Theorem 1. (See [9] and {10] for a survey of related questions.)
We shall consider here the problem of the number of summands needed for a
representation of the form given by Theorem 1. For convenience, we restate
Th. 1 in the case k = 1.
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under the supervision of Professor J. Lindenstrauss. I wish to thank Professor Lindenstrauss for
his interest and advice.

Received September 15, 1974
300



Vol. 20, 1975 DIMENSION THEORY 301

2n+1

THEOREM 1*. Let X be an n-dimensional space. Then there exist {¢, )27 in
C(X), such that for every f in C(X), there corresponds {g.}i27' in C(R) so that
the representation

2n+1

fx)= 2 gilgi(x))

i=1
holds.
In Sec. 2 of this paper, we prove that in the case n = 2, the number 2n + 1 is
the minimal one for a representation of the type appearing in Theorem 1* (and
thus in Theorem ). More precisely, we prove:

THEOREM 2. Let X be a 2-dimensional space, and let {¢;}i-, be functions in
C(X). Then there exists an f € C(X) such that f cannot be represented in the
form

fx)= Z g (@i(x))

with g, in C(R).

In the case n =1, the situation is different, and we shall consider it briefly in
Sec. 3. For n > 2 the situation is similar to the case n = 2. Some of the lemmas
presented here can be immediately generalized to the case n > 2. In others, the
situation is more difficult. We shall consider the case n >2 in a subsequent
paper. (See note at end of paper.)

Theorem 2 is an improvement of a theorem of Bassalygo [2], who proved that
in the case X = [0, 1]%, three functions {¢:}}-, are not enough for a representa-
tion of the type appearing in Theorem 1*. Our Theorem 2 also improves a
theorem of Doss [3] who proved that in the case n = 2, four functions are not
enough for the representation in Kolmogorov’s theorem [5], provided the
functions ¢} are monotone. We use here some of his methods.

Let us remark that the problem of the number of needed summands leads,
even in the simplest case, (i.e. in Kolmogorov’s theorem), to dimension
theoretic problems. Therefore, the natural approach is to begin at the outset
with an arbitrary n-dimensional space. (Two dimensional space in the present
paper.)

2. Proof of Theorem 2

The proof of the theorem is based on a series of lemmas. The first lemma
shows that two functions are not enough in Theorem 1* if dim X = 2. Later, we
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shall show that three functions do not suffice and eventually that even four are
not enough (this is the statement of Theorem 2).

LeEmMMA 1. Let X be a two dimensional space, and let ¢\, ¢, be functions in
C(X). Then there exists an f € C(X) such that f cannot be represented in the
form:

f(x) =gi(ei(x)) + gAp2Ax))

with g.(i =1,2) real functions.

Proor. Suppose that such an f does not exist. Then clearly, the functions
@1, @2 separate the points of X, and thus the mapping #: X — R?, defined by
P(x)=(@i(x), @xAx)), is a homeomorphism. Hence ¢[X] is a two dimensional
set in R?, and therefore has a non-empty interior in R? ([4] p. 44). In particular,
¢[X] contains a rectangle with vertices

(a:,ﬁl), (az,B2), (a1, B2), (azB).

Set x, = ¢ (ary, B1), X2 = ¢ a2, B2), X3 = th (a1, B2), X4 = P (2, B).
Let f be a function in C(X) so that f(x,) = f(x2) =1, and f(x;) = f(xs) =0.
Since f can be represented by f(x) = g:«{¢(x)) + g0Ax)), we get

2=f(x)+ f(x))=gua)+gAB1) + glaz) +g:B2) = f(x3) + f(xs) =0

which is a contradiction.

Let us recall now some definitions and results from dimension theory. An
n-dimensional (compact metric) space is called an n-dimensional Cantor
manifold if it cannot be disconnected by a subset of dimension = n — 2. Clearly,
an n-dimensional Cantor manifold is connected, and has dimension n at each
of its points.

It is well known that every n-dimensional space contains an n-dimensional
Cantor manifold (4], pp. 93-95). Thus there will be no loss of generality if we
assume in the proof of Th. 2 that X is a two-dimensional Cantor manifold.
Indeed, if Y CX, and f € C(Y) cannot be represented as f(x) = Z{_ g (@i (x))
(x € Y), then such a representation is impossible for an extension f of f over
X. From now on we assume that X is a two dimensional Cantor manifold.

A function ¢: X = Y is called zero-dimensional if dimy~'(y) =0 for every
yE€Y. A theorem of Hurewicz ([4], p. 91) states that dimX = dim¢[X]
whenever ¢ is zero-dimensional.
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LEMMA 2. Let X be a two-dimensional Cantor manifold, and let {¢;}t2] be
k + 1 functions in C(X) such that each f € C(X) admits a representation of the
form f(x)=2f1g:(¢:)), with g in C(R). Assume also that for every two
dimensional space Y, and k functions {{r}t-, in C(Y), there exists an f € C(Y)
such that f cannot be represented as:

f(x)=Z g (i (x)) with g in C(R)

(i.e. k +1 is the minimal number for two-dimensional spaces). Then every
k-tuple of different functions out of the k +1 functions {@:}i2! defines a
zero-dimensional mapping from X into R*.

Proor. It is clearly enough to consider ¥ = (¢, 91, - ¢). Suppose that
dimy >0, i.e. that there exists an a =(a, a» - &) in R* such that
dimy (a)= 1. Let F =y '(a). Then for 1 =i =k, we have ¢:[F] = a:. Since
{@.}i2! separate the points of X, and ¢;1 =i =k are constant on F, ¢.., must be
one-to-one on F. Thus piv,\/F is a homeomorphism, and ¢..,[F] is a one-
-dimensional set in R. Hence, ¢..,[F] contains an interval J of positive length.

Choose x € F so that ¢,.(x) is an interior point of J. By the continuity of
@« +1, there exists a neighborhood U of x in X so that ¢..,[U] CJ.

Fig. 1

F is closed and one-dimensional, thus, F is not dense in any open set of X.
(Because X is a two-dimensional Cantor manifold). Hence, we can find a
closed subset Y of U, with non-empty interior so that Y N F = ¢. Since Y has
non-empty interior in X we have dimY =2.

We shall show that every fE€C(Y) can be represented as f(x)=
=¥.1 gi(@i(x)), which will contradict the assumption of the lemma. Let f be any
function in C(Y), and let f € C(X) satisfy f/Y =f, and f/F =0. By the
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assumption of the lemma f can be represented as f(x) = 3! gipi(x)), x EX
Without loss of generality we may assume that g;(a;) =0 for 1 =i =k, where a;
are the coordinates of a. We recall that for x € F we have gpi(x)=a; 1 =i =k
and f(x) =0. So that for x € F we get:

k+1 k

0=f(x)= 21 gi(pi(x)) = Z:I gilai) + ger(@isi(x))

= 8rri(@enlx)),

i.e. gv+: vanishes on ¢, .,[F], and in particular on ¢..,[ Y] which is contained in
‘Pk+1[F]-
Consequently for x € Y we have:

ﬂn=ﬂn=;gwnn O

LeMMA 3. Let X be a space, and let {¢:}-, be functions in C(X) such that
every f € C(X) admits a representation f(x) = Zi-, gi(@:(x)), with g € C(A:)
(A, is the range of ¢;). Then there exists an M >0 so that each f € C(X) admits
the above representation with g satisfying ||g:/|= M||f|. (1=i =k).

PRoor. Set C = C(A)) X C(Az) X -+ X C(Ay), with the norm |lg., - - -, g[lc =
Max,si=||g:[l4. Consider the operator T : C — C(X) defined by:

T@~gmn=;&wu»

Obviously T is linear and bounded. (|| T| = k) and by our assumption, T maps C
onto C(X). Thus by the open mapping theorem, T maps the unit ball B of C
onto a neighborhood of the origin of C(X), and therefore, there existsan M >0
so that T(MB) contains the unit ball of C(X). O

LEMMA 4. Let X be a two-dimensional Cantor manifold, let {¢:}i-, be
functions in C(X) such that each f € C(X) admits a representation f(x)=
Siagi(@i(x)) with g € C(R), and let M be a positive number. Then there exists
an f € C(X), |lfll=1, such that in every representation of f in the above-
mentioned type, there exists an index, i, so that |g|l= M.

ReMARK. Clearly Lemmas 3 and 4 imply that for every two-dimensional
space X, and every three functions ¢:, ¢», 3 in C(X), there exists an f € C(X)
which cannot be represented as f(x) =2}, gi(@:i(x)).
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ProoF OF LEMMA 4. We prove the lemma in two steps. We show first that if
X contains a sequence of a certain type, the conclusion of Lemma 4 holds, and
then that such a sequence does indeed exist in X. We use the following
notation: the vector valued function (¢4, ¢2, ¢3,) : X = R* will be denoted by .
The images of the elements of X under ¢, ¢, @3 Will be denoted by a, 8,y
respectively.

A sequence {x;}-, of elements of X will be called an alternating sequence if
the following holds:

(]) ‘PZ(XZ)"I) = (Pz(ij) f()r ] = 1’2, - .[%]
. k
@ @©3(x2;) = @3(X2j+1) for j=12,--- [5] -1.

Two sequences {x;}i-, and {y;}-, of elements of X will be called a double
alternating sequence, if both {x;}}- and {y;};-, are alternating sequences, and in
addition ¢(x’)=¢.(y’) for 1 =j=k. Table I is an example of a double

alternating sequence, for k = 6.
TABLE I

e(x) =(a,B.v) (P(yl)z(alsél,‘;l)

@ (x2) = (az, B, y2) @ (y2) = (a2, B1, v2)
¢ (x5) = (as, B2, ) @(ys) = (a3, B2, 72)
@(x) = (@, B2, ¥3) @ (ys) = (s, B, ¥3)
@(x5) = (a5, B3, y3) @ (y5) = (as, Bs, ¥5)
¢ (Xe) = (e, Bs, 74) @ (y) = (s, B3, 4)

We claim that if for every intger k, there is in X a double alternating
sequence of length k, with distinct elements, then Lemma 4 is true. Indeed, let
M >0 be given. Let k be an even integer, k =2M, and let {x;}-, {y}
be a double alternating sequence with distinct elements. Let
L ={x1,x3,"* Xx-1, Y2, Y400 ey )’k} and N = {Xz,x4, o Xk V1, Y3,y )’k—x}. Since
all the points are distinct L NN = ¢, and hence there is an f € C(X) with
I fl=1, so that f is equal to 1 on L and to — 1 on N. We shall show that this f
has the desired property. Suppose f admits the representation:



306 J. STERNFELD Israel J. Math.,

fx)= Z} g(pi(x)) x€EX

Let W=2,c, f(x)—Zcenf(x). Since f(L)=1and f(N)= — 1 and both L and
N contain k points, we get that W = 2k.

On the other hand, since {x;};-, {y;}/-: is a double alternating sequence we get
(m=k/2)"

W= 3 0= 3 =3 e+ 3 f0)
-5 £ =3 £

> 8ilepi(xa-1) + i PIACACI)

1i=1 i=t i=i

Ms

il

i

2 gi(pi(xy)) — i Z &i(@i(y2-1))

1i= =1 i=1

Ms

i

= g3(@3(x1)) — g3(@3(¥1) — g3(p3(xx)) + g3(@3(¥x))

* JZI [gl(¢'(xj )= gle(y)]+ 2: (82(paAx2i-1))
~ 8@ + 3, [8:(px(y3) ~ glosys-)]

+ 3 [8x(ex(x)) — glpalra ] + i (e (yu-)
—ges(yxNl= gz(')’l) - g:(‘;l) —8(Ym+1) + ga(§m+1),

(where Y= ¢3(x1), )‘;l = ¢3(Y1), Ym+1 = ¢3(xk), ‘Ym+| SOS(}’k))
Hence:
83(71) - 33({’1) - gl(')’m +|) + ga(');mﬂ) =W=2k= 4M,
and thus ||g,] = M. It remains to show that under the assumptions of Lemma 4,
there exists in X a double-alternating sequence of length k, for every even k.

' It might be helpful to follow this computation with the example in Table I in mind, and
noting that if ¢(x) = (a,B,v) then f(x) =g a)+g.(B)+8:(y).
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Set (¢1,¢2) = @12: X > R?, and (¢, ¢3) = ¢13: X = R?. Let us recall that by
Lemmas 1 and 2, the functions ¢, ., and ¢, ; are zero-dimensional, and thus the
image of any open set of X under each of these two functions is two-
-dimensional in R>.

We introduce a special notation: Let F be a closed subset of X with a
non-empty interior. Wesay that F D, H if there exists a rectangle S in R’ with
sides parallel to the axes and with positive area so that ¢,.(F)D S and
H = F N ¢73(S). With this definition it is clear that whenever F D ,. H we
have that F D H, H is closed with non-empty interior, and ¢,,[H] is a rectangle
{namely the rectangle S appearing in the definition). The notation F D ,; H is
defined similarly, (with ¢, replacing ¢,,). Observe that since ¢, and ¢, are
zero-dimensional, it is possible to find for every closed subset F of X, with a
non-empty interior, sets H and L so that F O ,,H and F D ;L.

Let k be any positive integer. Set X = F,. Clearly @:2[Fi] contains a
rectangle S ={(af:a’'=a =a", B'=B =B"}. LetB*,g** be real so that
B'<B*<pB** < B" (See Fig. 2). Set

Si={aB):a’'=a=a"; B’ =B =*:
i={@B):a’'=Ea.=a"; B¥*=="}; and
Fi=F NeASY; Fi=F.NeiASW.

Clearly FiNnFi=¢ and F, D ,,Fi; F. D, F..

«

"
S k

ﬁ ”

o

Skt
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The set ¢, ;[Fi] contains a rectangle Si-, in the ay plane, of the form
Sici={(a,y):d’'=Ea=a",y =y =v"}. Obviously, a' =a’'<a"=a"i.e., the
interval [a’, «"] contains the interval [&',&"].

Set Fi_, = FiN ¢7(Si-)and we have: F, D2 FiD 5 Fi.,. Let us return to S'.
It contains the rectangle Si. Si={(aB):d'Sa =a", B** =B = B"} (see Fig.
3). Set Fi=FiN¢;XSY). Then we have ¢ [Fil=[a’.a"]. Now ¢ [F}]
contains a rectangle Si_,, and it follows from the construction that its « side is
contained in the interval [a@',@"] (see Fig. 3). Set Fi_, = ¢ XSi-) N Fi. We
return to Si_,. It contains a rectangle S}, whose y coordinates are the same as
those of Si-,, and with a coordinates which are contained in the interval of «
coordinates of Si_,. Put Fi_, = <p.“,'3($'2_,). The set qo.,z[ﬁl,.] contains a rectangle
Si_., whose a coordinates are necessarily contained in the interval of «
coordinates of S%_,. Set Fi.=¢ S, )NFi,, and we have F;., D ,,Fi..
Continuing in this manner we construct sets {F}i., and {F/}i., so that:

FiDF...DF,,D---DFDF,DF,
1.3 1.2 1.3 13 1.2

L2

X =F,
DF|DF, . DF,,D--——DF;DF;2F],
1.2 1.3 1.2 1,3 1.3 1.2
and

e[Fil=@lFil=la’,a"l D eilFial D el 1] D @il Fis]

D @i[Fiz]l D ——- D @[Fi] D @lFi1 D @[Fi]=a* a**].

The interval [a*, a**] = ¢,[F!] is thus contained in the interval of « coordi-
nates of all the rectangles appearing above.

Choose now k distinct points {a;}i-, in the interval [a*, a **], and let {£}}-,
be points in F/ so that ¢,(£) = ai. Set ¢x(%) =B and ¢s(%) = v. Setx, =%,
B:= B, and y, = y.. Since F}D . F}, ¢,,[F}] is a rectangle. Since (a,.B:) =
@120x1) and (az, B2) = ¢.2(%) are both in this rectangle, the point (a2,8,) also
belongs to this rectangle. Hence there is an x, € F| such that ¢, (x) = (a2, 81).
Put ¢;(x2) = y,, and then ¢ (x\) = (a,, 81, v1) and ¢ (x2) = (az, B1, 2). Since X3, x2
are in F3, and F3; D, F) the same argument shows that there exists x, € F;
such that ¢,(x3) = (a3, 7y2). Put @(x;) = B, and then ¢(x3) = (as, B2, v2). The
three points we constructed this far satisfy
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e(x)=(a\.B1, 7))
‘P(xz) = (aszl, v2)

(P(xs) = (as, B2.v2)
which are precisely the first three rows of the left column of Table I. By an
obvious induction we continue the construction of the x, i =1,2-~k so that
{x;¥:-, will be an alternating sequence. The {y:}'., are constructed in the same
manner, using the sets F%, one has only to choose the points {§}*-, so that
@($:) = a; for all i. This is possible since ¢/[F7] D [a*, a**] D {a: }i-,. It is easy
to see that {x; Y-, N {y.}_, = ¢ since {x,}\-, CF} and {y;}i-,CF/and F,N F} =
¢. (The {x;}i, and similarly the {y.}}-, are mutually distinct since «;# «; for
i#j). This proves Lemma 4. (J
The next Lemma is of a general geometric nature.

LeMMA 5. Let W be a two dimensional Cantor manifold contained in R*. If
W is not contained in a plane perpendicular to one of the axes of R’, then at
least two of its three projections on the two-dimensional planes determined by
the axes are two dimensional.

Proor. We denote the axes of R* by X, Y, Z, the projections on them by
P,, P, P., and the projections on the axis planes by P.,, P.., P,..

We shall prove that if dim P, [W] =dim P..[W] = 1 then W is contained in a
plane parallel to the YZ plane.

Put A ={x:x € X, dim[WNx XY XxZ]=0}. The set P.[W} is connected
and compact. If W is not contained in a plane parallel to the YZ plane then
P,[W] contains more than one point, and hence P.[W]=[a,b], with a <b.

Let x, be an interior point of [a,b].Then clearly W N x, X Y X Z disconnects
W. Since W is a two-dimensional Cantor manifold we get dim[W N x, X Y X
Z]= 1. Hence, x, & A.

Thus we have shown that if W is not contained in a plane parallel to the
Y X Z plane, then there exists an open interval (a, b) in the X axis which is
disjoint from A.

For each rational vy, and positive rational €, we denote

B,(yv.e)={y:yEY. |y —y|<e},
B.(y,e)={z:z€Z,

Z —y|<e},
S, (v,€)={x:x €EX, x X B,(v,e)CP,[W]} and

S.(v.e)={x:x €EX, x XB.(y,e) CP.[WIL
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We shall show now that X\ A C U Sk(¥y, €) where the union is taken over all
rational y and €>0, and R E{y,z}. Indeed, let x,€ X\ A, ie.,
dim[W NxeX Y X Z]= 1. A set of positive dimension in the plane has positive
dimensional projection on at least one of the planes’ one dimensional axes.
Hence the projection of WNxoX Y XZ on xoXY or xoXZ contains an
interval, and thus a rational interval of type xoX B,(y,e) or x4 B.(y,¢).
Hence x,E S,(y,£) or x,€ S.(y,e). Thus X\A CU,.Sk(y,e) or AD
X\U,..S(y,¢).

We now claim that if dim P,,[W]=1, then for every vy and € S,(vy,€) is
nowhere dense in X. Indeed, if there exists an interval I CX such that
G =8S,(v.€)N I is dense in I, then since for each x € G we have x X B,(y,¢€) C
P, [W], we get G X B,(y,€) CP,,[W]. But P,[W] is compact, and therefore
P,[W1D G X B,(y,e) DG X B,(v,€) =1 X B,(y,€). But I X B,(y,€) is a rec-
tangle. Hence dim P,,[W] = 2.

A similar argument shows that if dim P,.,[W]=1 then for every y and ¢
S.(v.€) is nowhere dense in X. Consequently, if both P,,[W} and P.[W] are
one dimensional, then U ,.Sk(y,€) is of first category in X. Thus by the Baire
category theorem X\ U ,.Sz(y,€) is dense in X. Since A D X\ U ,..Sr(y,€),
A is dense in X too. But we have seen that if W is not contained in a plane
parallel to the Y - Z plane then there exists an interval which is disjoint from A.
This proves Lemma 5. U

Let X be an n-dimensional Cantor manifold, and ¢: X — R" a function. ¢
will be called dimension preserving if dimy[Y]=n whenever dimY =n.

REMARK. By the theorem of Hurewicz [4] mentioned before, zero-
-dimensional functions are dimension preserving. Let us also remark that the
image ¢[X] of an n-dimensional Cantor manifold X under a zero-dimensional
function ¢, is again an n-dimensional Cantor manifold. Indeed, if U discon-
nects ¢[X], then ¢ ~'(U) disconnects X, and thus dim ¢ ~'(U)= n — 2. By the
Hurewicz theorem, we get that dim U = dim¢ (¢ ~(U)) 2 dimy'(U)=n - 2.

LEMMA 6. Let X be a two-dimensional Cantor manifold, and let {¢;}i-, be

four functions in C(X) such that each f € C(X) admits a representation of the
form

fx)= Z g(@i(x)) with g €C(R).

Then there exists a permutation m of {1,2,3,4} and a two-dimensional Cantor
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manifold Y CX so that the restriction to Y of the four functions (@©.q),@=o),
(@ntys @rcv)s (@i Prcr)s (Prirs @ear) (all maps into R ’) are dimension preserving.

ProoF. We use the notation (¢, ¢;) = @i;. Let us first observe that by Lemma
2. Lemma 4, and the remark following it, each 3-tuple of different functions
@10 = (@i @ 1) out of the four functions {¢;}i-,, forms a zero-dimensional
function ¢ X > R’. Hence ¢,;; maps two-dimensional Cantor manifolds
onto two-dimensional Cantor manifolds.

We shall show now, that given two functions of the type ¢;;, with a common
index {, say ¢, and ¢,;, they cannot both lower the dimension of the same
two-dimensional subset of X. Indeed, assume that both ¢, ., and ¢, ; reduce the
dimension of a two-dimensional set U C X. Let Y be a two-dimensional Cantor
manifold contained in U. We have dime[Y]l=dime[Y]=1.
(dim ¢i;[Y] =0 is clearly impossible).

By our remark, ¢,.; is zero-dimensional, and hence W =¢,,;[Y] is a
two-dimensional Cantor manifold contained in R’. The two-dimensional pro-
jections of W in R are ¢,.[ Y], ¢.5[ Y], and ¢25[ Y], and by our assumption two
of them, ¢,,[Y] and ¢,;[Y], are one-dimensional. Hence by Lemma 5, W is
contained in a plane parallel to the 2,3 plane. This means that ¢, is constant on
Y. Thus each f€C(Y) can be represented as f(x) = ={_. g (¢;(x)) contradicting
Lemma 4. This proves our assertion.

We come now to the proof of the lemma. If all the six functions ¢;; : X > R?
are dimension preserving, then there is nothing to prove. Assume that one of
the functions, say ¢, reduces the dimension of a two-dimensional set U C X.
Let Y be a two-dimensional Cantor manifold contained in U. By our previous
assertion, all functions ¢;;, having a common index with ¢, are dimension
preserving on Y, i.e. @iz @13, @24, @14 are dimension preserving on Y. This
proves Lemma 6. [

ProOOF OF THEOREM 2. Theorem 2 will be proved by showing that if X is a
two dimensional space and {¢;}{-, are four functions in C(X) such that each
f € C(X) admits a representation

fx)= 2 gi{pi(x)) with g € C(R), then

Lemma 3 is contradicted, i.e., given M >0, there exists an f € C(X), |f]l= 1.
such that in every representation of f in the above form, there exists an index i
such that gl = M.



312 J. STERNFELD Israel J. Math,,

As usual, we assume that X is a two-dimensional Cantor manifold, and by
Lemma 6, we may assume that the functions @2, ¢13, @24, ¢34 are dimension
preserving on X. We use the letters a, 8,v,8 to denote the images of points
x € X under ¢; i = 1,2,3,4 respectively. As in the proof of Lemma 4, we call a
sequence {x;}i-; C X an alternating sequence if we have ¢x(x;) = @a(x;.,) for i
odd, and ¢@s(xi) = @i(x;+1) for i even. A pair of m-tuples of points {x;}7-
{x; %+, will be called a doubly-alternating sequence relative to.a (resp.
relative to &) if both {x;}7-, and {x:}!Z..., are alternating sequences, and in
addition @i(x)=@(Xm+)=0a;, P=12,---,m, (respectively @i x)=
CiXme) =8, i =1,2,---,m.)

Let G and G’ be subsets of X and let k be an integer. We use the notation
G' <.+ G if G' CG, and for every set of k points {a;}i-, Cp,[G'], so that a;’s
with even indices are different from a;’s with odd indices, there exists an
alternating sequence {x;}/-, in G with ¢\x))=a;, 1=i=k. The relation
G' <. G is defined similarly with {§}i-, and ¢« replacing {a:}i-, and ¢,
respectively.

Since the functions @2, @1, @24, 3.4 are dimension preserving, we can show,
using the same method as in the proof of LLemma 4, that given any G C X with
non-empty interior, and any integer k > 0, there exist subsets G',G" of X, with
non-empty interior so that G' <, G, and G" < .« G. (This is done by construct-
ing G =G 22Gi-121:Gi-2D -+ D,2G,=G'). Using the methods of the
proof of Lemma 4, we are also able to show that each subset G of X with
non-empty interior contains doubly-alternating sequences of arbitrary length.
(Relative to a or §).

Let k >0 be any integer. The set ¢,,[X] contains a rectangle

S={@p):a’sa=a"; p'=p=4"}.

Choose B* so that "< B* < B”, and set:

Si={(aB):a’'=sa=a", B'=B=B*
S:={{aB):a'=a=a", BX*=B=B"}

(see Fig. 4).

Set G. = ¢15(S)). The set G, is closed with non-empty interior, and according
to our comments, a subset G of G, can be constructed, so that G, is closed
with non-empty interior, and G <, Gi. ¢.:[Gi] contains a non-empty open
plane set. Thus, ¢,[G{] contains an interval [a*, a**] which is clearly con-
tained in [a’, a"]. (see Fig. 4). Denote:
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S S
a | 2
a™

/ 8'2 Vv
S: ?1,2[Gk]
a!
a ’ » #”
B A A
Fig. 4

S:={(aB):a*<a <a**, B*<pB<p",

and let V be a closed rectangle with sides parallel to the axes, contained in S:.
Set X' = ¢73(V). Obviously we have:

(1) X' NG =¢
2 e[ X'1Cla*, a™*] Ce\[Gi].

The space X' is a compact two-dimensional metric space, Operating in a similar
manner on X' (or on a Cantor manifold contained in it), we construct in X’
closed sets with non-empty interior H,, H; and X" so that:

(3) Hi < H.
)] el X"1 CodHiJ
5) X"N H, = ¢.

Again in X" we construct closed sets with non-empty interior G._;, Gi-i, and
X"so that:

) Gier < G
M e[ X" CoillGin)
8 X"NG,=¢.

Continuing in this manner we construct sets {G;}-,, {G}',, {H}ier, {H'}i=1 50
that:
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(i) Gi<.uG, Hi<.uH for 1Si=k

(i) @[H)1CeilGilfor 1=i=k and @G-, CesH!) for 2=i =k

(iii) The sets {H:}i-, and {G.}i-, are all mutually disjoint. The next steps in
the proof are, unfortunately, somewhat involved. (By that we don’t mean that
the previous were simple....) To fix the ideas, let us consider the following
example where k = 2.

In this case we have:

G\ <G, Gi<G, H\<H, H)<H,.
14 14 44 44

o[Hi1CeilGi); @illH:)CoillGi]l @4lGil CouHA,

and the sets Gy, G,, H,, H, are mutually disjoint.

Let 84, 85,845,684 bedistinct points in ¢{H1]. Since H} <.,H,, there exists an
alternating sequence {x!}i., in H,, with @«xi)=8}. Thus, the {xi}i-, are
distinct. Set @ (x})) =al. i =1,2,3,4. We have: {ai}i-i Co.[H ] Cei[G]], and
Gi<.,4G\. Hence if {a{, a3} N {a:, ai} = ¢, then there exist in G, an alternating
sequence {x3}i-,, with @:(x}) =a!, and {x},x}} N {x3,x3} = ¢. Set p.(x}) = 8%
Then {63}i-, CodG\] CoH}]. Hence if {87, 83} N {83, 81} = ¢, there exists in H,
an alternating sequence {xi}i-, with @x}) =87% and {x},x3}N{x3,x}=o.
Setting ¢,(x}) = a}, and hoping that {a}, a3} N {a?, ai} = ¢, we can find in G an
alternating sequence {x{}{., with ¢ (x}) =a’.

In this manner, the 16 points {x{} 1 =1, j =4 are constructed, with

{xi:i+j=1(mod 2}N{x!:i+j =0 (mod2)}=¢,
and:
TABLE II

e(x)=ai,Bi, i, 8
@(x2) = a3 Bi, v 82
o(x3) = a3, B3, 71,83
e(x)=ai, B3 8;
e(x) =ai,Bl, v, 81
e(x)=a3 Bl v, 83
e(x3) = a3, B3 v 83

¢ (x)=ai, Bl v3, 81

e(x})=ai,Bi,vi, 8%
e(x3) = az Bi,v2 83
¢ (x3) = a3, B2y 83
e(xd = al, Bl yi, 84
e(x)=al, By, 81
o(x3) =al,Bl,v%,83
@(x3) = ai, B3, v3 83

p(x3) = al, B3 v3 8i
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If f€ C(X) admits the representation f(x)=Z3{_, g(:i(x)), then following
Table II we get:

W =

4

2 (— l)i+if(xjn:) = gi(y i) + gg('yl) + gs(-yf) + g}(,yi)

i=1

+a(yD + gy +g(yD + gy D + ;m%x

i.e. 3-4=3-2k summands. Since the sets N={x!:i+j=1 (mod 2)} and
L ={xi:i+j=0 (mod?2)} are disjoint in X, there exists in C(X) an f with
[fll=1, f(N)= —1, and f(L)= + 1. For this f we get:
4
W= 2} 2 (= D"f(xh) =4,

(i.e. W = (2k)* = 4k?). Hence, for g; or g., we get || g | = (4k*/3:2k) = 2k /3. One
observes easily that the last inequality holds if a similar construction is carried
out with an arbitrary k. The following is a precise realization of the above ideas.

Let {81}%, be distinct points in ¢.[H']. Since H' < ,xH,, there exists an
alternating sequence {x %, in H,, with @.x})=8! Thus, the {xi}%, are
distinct. If f € C(X) admits the representation:

fex)= ; g(@i(x)),

then it follows from the definition of alternating sequence that:
2k . 2k i 2k i
(A) 2 (=D fGey =2 (=D gd8D+ 2 (— D7 gila)

+ g3(y) — g3(Yier1)s

where ai=@,(x}) 1 =i =2k, v, = @i(x1), and visr = @a3(x5).

It may happen that an | with an even index i will be equal to an «a} with an
odd index j. Suppose we have m such pairs (i,j) i even, j odd and o= a].
(m =k). Thus the sum Z%,(—1)""'g;(a}) reduces to a sum with 2(k —m)
summands at most. Let us reorder the [2(k —m)}ai’s which appear in the
reduced sum by {& };% ™ in such a manner that an & gets an odd index j if and
only if &} = a | with i odd. Such a reordering is possible since pairs of elements,
one with odd index and the other with even index were removed from {« !}%,.
Clearly, in the set {a}}}* ™ elements with an odd index are different from

elements with an even index, and:
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2(k—m)

(B) 2 (=D7glad= 3 (- 1"ga@).

We have {a!}% ™ Ce[H\1Cei[G}]l, and G| < ,xG,. Thus, there exists an
alternating sequence {x’¢ ™ in G,, with ¢,(xD=a: 1 =i <2(k m), and
X N {x 1}, = ¢ since H,N G, = ¢. Clearly the points x? with an even
index i differ from the points x? with an odd index i since the corresponding
(al)’s differ. It follows from the properties of an alternating sequence that:

2k —m) 2tk —m)
© 2. (-1 f(xh = ZI (- Digial
S . 5 2 summands
* Z:u (= g4(6‘)+{of the form]
g2:(y)

of the form

= (Em) (- 1)i+lgl(&:)+2”2’") (= 1) g8 + {2 summands]
gs(y)

where 83 =¢@x) 1=2i =2k —m).
Thus, if we sum (A) and (C) we get in view of (B):

©) S0+ S (<D= 5 (=1 g3

+ D (—1)'g«8%+ {4 summands of the form gi(y)}.
=

Let us select, in G\ {x}7¥/ ™ a doubly alternating sequence relative to
o {x e, (X o2 m o Of dxstinct points. Set 87 = @u(x1),2(k —m)+1=i=
2k. Then we get (see Table I in the proof of Lemma 4):

2k 2k 4 summands
(E) Y (- fh= A > (- DigddhH+4 of the form }
i=2(k—m)+1 i=2(k—m)+1 g2(B) or g3(')/)
(a summand of the form g-(8) may appear in (E) if m is odd). By summing (D)
and (E) we get:
(F) 2 2 (-G = 2 (=D gu8D + 2 (~ 1gud)

+ {8 summands of the form g.(B) or g:(y)}.

The points {83}, are all in ¢.[G}, and ¢[G\] C¢.[H3]. Thus, since H < 4xH>,
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we can repeat the process carried out with the {a{}i%,, i.e., remove the m’ pairs
(67,83 with 83=83i even and j odd, reorder the remaining 6%’s in the
prescribed manner as {83}
with @.(x?}) = 82, and then select in H,\ {x }}*/ ™" a double alternating sequence
X e, (X sk -m+y relative to 8. By (F) we then get:

, select in H- an alternating sequence {x}}?¢™°

G X XUV =3 (- )T d8)+ 2 (- 1) gulad)
+ {less than 3 -6 summands of the form g.(B) or gi(y)},
where a?= ¢(x?).

ReMARK. We use “less than 36 summands” in the brackets, since each j
adds 6 such summands (2 by the alternating sequence, and 4 by the
double alternating sequence) except j =1 where there is no alternating se-
quence, and just 2 summands of the form gi(y) are added.

Repeating this process inductively 2k times, we get:

(H) Z }; (-1 f(xhy = ; (-1 g8+ 2 (— 1) gu8%)

+{less than 2k -6 summands of the form g.(8) or gi(y)},

where 8% = @u(x¥) 1=i =2k
The points {x!} 1 =i, j =2k were selected in such a manner that j, #j,

implies {x}?%, N{x 2}, = ¢, and such that for fixed j, x with odd i differs from
all the x%’s with even i. Thus the sets

N={x!:i+j =1 (mod 2)} and
L={x!:i+] =0 (mod 2)}

are disjoint.

Let f € C(X) be such that |f|=1, f[L]1=1 and f[N]= —1. Suppose f
admits the representation:

fx)= Z g (@i(x)).

Then by (H) we get

U =3 fe0- 3 f@)= 3 S (- feh =
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= {less than (2k + 2k + 2k - 6) summands of the form g:;(t) i =1,2,3,4}.

Thus max,sisdg:|| = 4k*/16k = k4.
Since k was arbitrary this proves Theorem 2. (]

3. The case dimX =1
We conclude with a special result concerning the case n = 1.

THEOREM 3. Let T denote the circle. Let s, y, be any two functions in C(T).
Then there exists an f € C(T) such that f cannot be represented in the form
f(x) = g(¥(x)) + g2(¢(x)), & € C(R).

Let X be a space with dim X = 1. Clearly, each f € C(X) can be represented
in our usual form using one ¢ € C(X) (i.e. f(x) = g(@(x)) if and only if X is
topologically contained in an interval. If two functions ¢, ¢, can do the job (i.e.
each f € C(X) admits a representation f(x)=g(¢(x))+g:(¢(x)), then by
Theorem 3, X does not contain a circle. Then, if X is assumed to be connected,
and locally connected, it is a tree (dendrite). It is known that if X is a finite tree
with branching index not greater than 3, then two functions ¢, ¢, are enough.
In the case of infinite trees, it is not known whether two functions are enough
or not, however, three are clearly enough by Theorem 1*. For a detailed
treatment of the case where X 1is a tree, see [1].

ProoF oF THEOREM 3. Let ¢, 4, € C(T).
Let V be a subset of T. Set

Vi={t:teV, card[yi'(¥,(t)N V= 2}
Vi={t:t €V, card[y3'(¥(t)) N V] = 2}
(card (U] denotes the cardinality of the set U),
and
Vo=V'NVi
Consider the sequence {T,}r-o of subsets of T defined inductively by:

0= Ts Tn+l = (Tn)(]).
We claim that N5_,T,# ¢. We shall prove this by showing that for each n,
T\ T, is finite. T\ T, is empty by definition. Assume that

TN\T, ={t:"- &}
(T ={t:t €T, card{y7' W) N T,} = 2}.
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Lett € T.\(T.)". Then clearly card[¢7'(¢,(t))] = k + 1, and hence ¢7'(¢(t)) =
{t,vi:v2 - ym} 1=m =k with {y,=--y,} C{t,- - t}. There are at most two
points x in T with card[y7'(¢,(x))] = 1. Observe also that if t,¢t' € T, \(T,)",
then ¢7'(yn(t)) N 7' (Yi(t')) = ¢. For otherwise, ¢,(t) =y, (t’) which implies
t,t' €(T,)'. Consequently, there are at most k +2 points in T,\(T,)', thus
T\(T,)' is finite.

The same argument shows that T\(T.)’ is finite. Hence T\ T,.,=
T\(T.)' N(T,)? is finite.

ReEMArK. Since card[T\\T,]=4, one can easily obtain card[T\T,]=
4-3"7", Let n be an integer, and let t, € T,.. Hence, there exists a t,€ T,_;,
t, #ty, with ¢ (t;) = () = a, Set (t,) = B1. There exists a t; € T, o, t; # 5 50
that x(t2) = ¢x(ts) = Ba. There exists t, € T, s, t; # t4 50 that ,(t;) = ¢,(ts) = @z
Continuing inductively, we construct a sequence {t,: - - f,} with:

(*): Yi(tur) = d(ta), ¥a(ta) = da(tus) (k=1).

If for each n the sequence {t, - - - t,} consists of distinct elements, then for each
n there exists f, € C(T), so that |f.|=1, fi(tx)=1,fi(ta-)=—1 (k= 1).
Suppose f,{(t)=g.(d:(t))+g:(t)). Then by (x) (for n even), n=
(= D7) = g:B1) + g:Bar). Thus |gJdl=n/2. Since n was arbitrary,
Lemma 3 implies Th. 3.

If for some n, there exist in the sequence {¢,---t,} two points t, = f,, with
1=k <m = n, then, (*) implies that:

Ui m—1
(+) ;(“1)'f(ti)=0, or ;(—l)if(t,.)=()
for each f which can be represented by f(t) = g,(¢n(t)) + g:(¥(t)). But since
there are f € C(T) which do not satisfy (+), the theorem is proved also in this
case. [

Note added in proof. We can show that the theorem is valid also for n =3,
i.e. that for no X with dim X = 3 will 6 functions {¢;};-, suffice in Theorem 1*.
For n >3 we have till now only partial results.
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